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Abstract— This paper presents a bounded linear stability
analysis for a hybrid adaptive control that blends both direct
and indirect adaptive control. Stability and convergence of
nonlinear adaptive control are analyzed using an approximate
linear equivalent system. A stability margin analysis shows that
a large adaptive gain can lead to a reduced phase margin. This
method can enable metrics-driven adaptive control wherebythe
adaptive gain is adjusted to meet stability margin requirements.

I. I NTRODUCTION

Adaptive control is nonlinear and stability of adaptive
control cannot be analyzed by the traditional phase and gain
margins. These margins are used for linear control laws to
provide robustness in the presence of system uncertainties.
The lack of stability metrics for adaptive control is a major
challenge to certifying adaptive control for safety-critical
systems. Metrics-driven adaptive control introduces a notion
that adaptation should be driven by some stability metrics to
achieve robustness [1]. A bounded linear stability analysis
method is introduced for analyzing adaptive control in terms
of the linear stability concept by establishing an approximate
linear equivalent system as a function of persistent excitation.
This linear equivalent system is only used for analysis and
not for actual adaptation, and can provide estimates of
relative stability of nonlinear adaptive control for a given
adaptive gain. By adjusting the adaptive gain during the
adaptation to meet certain stability margin requirements,
the adaptive law is thus made to be metrics-driven. The
bounded linear stability analysis is studied in a framework
of a hybrid adaptive control which blends both direct and
indirect adaptive control to improve tracking performance
[2], as shown in Fig. 1.

In recent years, direct model-reference adaptive con-
trol (MRAC) using neural networks has been a topic of
great research interests [3], [4], [5]. Indirect adaptive con-
trol achieves adaptation by means of system identification
of plant parameters or uncertainties based on certainty-
equivalence control schemes [6], [7]. In this study, a re-
cursive least-squares (RLS) indirect adaptive law is used as
a parameter estimation technique to reduce the modeling
error, while a direct MRAC law achieves a reduction in
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the tracking error. The study shows that the hybrid adaptive
control potentially can offer better tracking performanceand
can prevent problems with high-gain control using direct
MRAC alone.

Fig. 1 - Hybrid Adaptive Control Architecture

II. H YBRID ADAPTIVE CONTROL

Given a plant model as

ẋ = Apx + Bpu (1)

wherex ∈ R
n is a state vector,u ∈ R

n is a control vector,
andAp, Bp ∈ R

n×n are unknown.
The objective is to produce a controller that enables the

plant to follow a reference model described by

ẋm = Amxm + Bmr (2)

whereAm ∈ R
n×n is Hurwitz and given,Bm ∈ R

n×n is also
given, andr ∈ R

n ∈ L∞ is a bounded command vector with
ṙ ∈ R

n ∈ L∞ also bounded.
Defining an estimator model

˙̂x = Ax + Bu + Θ>Φ+ uad (3)

whereA, B ∈ R
n×n are known,Θ> =

[

∆Â ∆B̂
]

∈ R
n×2n,

Φ =
[

x> u>
]>

∈ R
2n, anduad ∈ R

n is a direct adaptive
signal.

Defining the tracking error as ˜x = xm − x, the goal is
to determine a controller that results in limt→∞ ‖x̃‖ = 0.
A dynamic inversion controller is designed from Eq. (3)
to give the tracking error a second-order response with a
proportional-integral feedback control as

u = B̂−1
p

(

ẋm − Âpx + Kpx̃+ Ki

∫ t

0
x̃dτ −uad

)

(4)

where Âp = A + ∆Â and B̂p = B + ∆B̂ are estimates
of Ap and Bp, Kp = diag(kp,1, . . . ,kp,n) > 0, and Ki =
diag(ki,1, . . . ,ki,n) > 0.



The tracking error dynamics are expressed as

˙̃x = −Kpx̃−Ki

∫ t

0
x̃dτ +Θ>Φ+uad − (Ap −A)x− (Bp −B)u

(5)
Let e =

[
∫ t

0 x̃dτ x̃
]>

∈ R
2n, then

ė = Ace + b
(

Θ>Φ+ uad − ε
)

(6)

where ε = ẋ − Ax − Bu is an estimation error which is
assumed to be measurable and

Ac =

[

0 I
−Ki −Kp

]

, b =

[

0
I

]

(7)

The direct adaptive signal is parameterized by a linear-in-
parameter matched uncertainty as

uad = W>β (x) (8)

whereW ∈ R
m×n is a weight matrix andβ ∈ R

m is a basis
vector with Lipschitz properties

‖β (x)−β (x0)‖ ≤C‖x− x0‖ (9)

for some constantC > 0, which implies a bounded derivative
∥

∥

∥

∥

∂β (x)
∂x

∥

∥

∥

∥

≤ L (10)

for some constantL > 0.
The adaptive law is given by

Ẇ = −Γβ e>Pb (11)

where Γ > 0 ∈ R is an adaptive gain andP > 0 ∈ R
2n×2n

solves the Lyapunov equation

PAc + A>
c P = −Q (12)

whereQ > 0 is a symmetric positive-definite matrix.
∆Â and∆B̂ are estimated by an indirect adaptive law based

on the recursive least-squares (RLS) method

Θ̇ = −
1

m2 RΦ
(

Φ>Θ− ε>
)

(13)

Ṙ = −
1

m2 RΦΦ>R (14)

where m2 = 1+ Φ>RΦ ∈ R is a normalization factor,R >

0∈ R
2n×2n is a covariance matrix.

The proof of the RLS indirect adaptive law is as follows:
Proof: Consider the following cost functional to be mini-

mized

J (Θ) =
1
2

∫ t

0

1
m2

∥

∥

∥
Θ>Φ− ε

∥

∥

∥

2
dτ (15)

The necessary condition is obtained as

∇J>Θ = 0⇒

∫ t

0

1
m2 ΦΦ>Θdτ =

∫ t

0

1
m2 Φε>dτ (16)

By letting

R−1 =
∫ t

0

1
m2 ΦΦ>dτ (17)

then it can be shown that

R−1Θ̇+
1

m2 ΦΦ>Θ =
1

m2 Φε> (18)

which results in Eq. (13). Differentiation of the identity
R−1R = I also yields Eq. (14).

Proposition 1: The hybrid adaptive law can be shown to
be stable and result in bounded signals.

Proof: Let Θ∗, W ∗ be constant ideal weights, and̃Θ =

Θ−Θ∗, W̃ = W −W ∗ be weight variations, theñ̇Θ = Θ̇ and
˙̃W = Ẇ . Consider the following Lyapunov candidate function

V = e>Pe + trace
(

W̃>Γ−1W̃ + Θ̃>R−1Θ̃
)

(19)

V̇ is evaluated as

V̇ = e
(

A>
c P+ PAc

)

e +2e>Pb
(

Θ>Φ+W>β − ε
)

+ trace

[

−2W̃>β e>Pb−
2

m2 Θ̃>Φ
(

Φ>Θ− ε>
)

+ Θ̃> d
dt

(

R−1)Θ̃

]

(20)

SinceR−1R = I, then
d
dt

(

R−1)R + R−1Ṙ =
d
dt

(

R−1)R−
1

m2 ΦΦ>R = 0 (21)

So
d
dt

(

R−1)=
1

m2 ΦΦ> (22)

Using the trace property trace(AB) = BA, one then obtains

V̇ ≤−e>Qe +2e>Pb
(

Θ̃>Φ+ ∆2

)

−
2

m2

(

Φ>Θ̃−∆>
1

)

Θ̃>Φ+
1

m2 Φ>Θ̃Θ̃>Φ (23)

where∆1 = supx,u

∣

∣ε −Θ∗>Φ
∣

∣ and ∆2 = supx,u

∣

∣W ∗>β −∆1
∣

∣

are approximation errors.
V̇ is bounded by

V̇ ≤−λmin (Q)‖e‖2 +2λmax (P)‖e‖
(∥

∥

∥
Θ̃>Φ

∥

∥

∥
+‖∆2‖

)

−
1

m2

∥

∥

∥
Θ̃>Φ

∥

∥

∥

2
+

2
m2 ‖∆1‖

∥

∥

∥
Θ̃>Φ

∥

∥

∥

= −‖e‖ [λmin (Q)‖e‖−2λmax (P)‖∆2‖]

−
∥

∥

∥
Θ̃>Φ

∥

∥

∥

[

1
m2

∥

∥

∥
Θ̃>Φ

∥

∥

∥
−2λmax (P)‖e‖−

2
m2 ‖∆1‖

]

(24)

Defining a compact setV as

V =

{

e ∈ R
n
,Θ̃>Φ ∈ R

n : ‖e‖ ≥ r1 =
2λmax (P)‖∆2‖

λmin (Q)
,

∥

∥

∥
Θ̃>Φ

∥

∥

∥
≥ r2 = 2r1m2λmax (P)+2‖∆1‖

}

(25)

and a complementary compact setS which containse = 0
and Θ̃ = 0, thenV increases inS but all trajectories of
e and Θ̃>Φ will stay inside ofS . It follows by LaSalle’s
extensions of the Lyapunov method thate andΘ̃ are bounded,
and so arex andu.



III. B OUNDED L INEAR STABILITY ANALYSIS

Stability of nonlinear adaptive control is usually analyzed
by the Lyapunov method. The traditional linear stability mar-
gin concept may be extended to nonlinear adaptive control
if it could be represented by some linear approximations.
To obtain an equivalent LTI system, the adaptive law can
be linearized at a certain point in time when the weights
are at a steady state, usually long after initial transientshave
settled down. However, transient responses during adaptation
can be important and the adaptive law should be designed in
a way that would prevent large initial transients which can
compromise system robustness. The bounded linear stability
analysis seeks a piecewise linear equivalent approximation
of nonlinear adaptive control in terms of a persistent excita-
tion (PE) over a short, moving time window during which
the LTI concept of stability margins could be analyzed to
provide a method for adjusting the adaptive gain for the
next time window. The linear equivalent approximation is
not a replacement of an adaptive law but rather is used in
conjunction with the adaptive law for the stability analysis
purpose.

Theorem 1: The hybrid adaptive law and the tracking
error dynamics can be approximated by a piecewise linear
representation as

d
dt





e
z1

z2



≤





Ac b b
−Γβ 2

0 b>P 0 0
0 0 −a









e
z1

z2





+





b∆2

ε1

ε2



 (26)

over a semi-open time intervalt ∈ (t0−T,t0], wherez1, z2 ∈

R
n, a =

R0Φ2
0

1+R0Φ2
0

> 0, R0 = λmin (R), and β 2
0 , Φ2

0 ∈ R are

persistent excitation values defined as

β 2
0 =

1
T

∫ t0

t0−T
β>β dt (27)

Φ2
0 =

1
T

∫ t0

t0−T
Φ>Φdt (28)

Let z1 = W̃>β ∈ R
n and z2 = Θ̃>Φ ∈ R

n. Then

ż1 = −b>Peβ>Γβ +W̃>β̇ (29)

ż2 = −
1

m2 z2Φ>RΦ+
1

m2

(

ε −Θ∗>Φ
)

Φ>RΦ+ Θ̃>Φ̇ (30)

Sinceβ satisfies the Lipschitz condition and ˙x is bounded
becausex and u are bounded, theṅβ = ∂β

∂x ẋ is therefore

bounded. Also,Φ̇ is bounded sincėΦ =
[

ẋ> u̇>
]>

and
u̇ can be shown to be bounded by differentiating Eq. (4) as

u̇ = B̂−1
p

[

Amẋm + Bmṙ− Âpẋ−b>Acė

+
1

m2

(

Θ>Φ− ε
)

Φ>RΦ+ b>Peβ>Γβ −W>β̇

]

(31)

Let ε1 = supx,u,t

∣

∣

∣
W̃>β̇

∣

∣

∣
andε2 = supx,u,t

∣

∣

∣

Φ>RΦ
m2 ∆1 + Θ̃>Φ̇

∣

∣

∣

for t ∈ (t0−T,t0]. These error terms come from the actual
adaptive laws (11) and (13) and thus act as bounded distur-
bances. Upon integration, one gets

z1 (t0)− z1 (t0−T ) ≤−

∫ t0

t0−T
b>Peβ>Γβ dt + ε1T (32)

z2 (t0)− z2(t0−T) ≤−

∫ t0

t0−T

1
m2 z2Φ>RΦdt + ε2T (33)

The mean value theorem for integration states that
∫ b

a
F (t)G(t)dt = F (c)

∫ b

a
G(t)dt (34)

wherec ∈ [a,b] and g(t) ≥ 0. If G = 1, then the special case
of the mean value theorem for integration is obtained as

∫ b

a
F (t)dt = F (c)(b−a) (35)

Applying the mean value theorem for integration then
yields

z1 (t0)− z1 (t0−T ) ≤−Γb>Pe(t1)
∫ t0

t0−T
β>β dt + ε1T (36)

z2 (t0)− z2(t0−T ) ≤−z2 (t1)
∫ t0

t0−T

1
m2 Φ>RΦdt + ε2T (37)

wheret1 ∈ (t0−T,t0].
But R0Φ>Φ ≤ Φ>RΦ, hence

z2 (t0)− z2 (t0−T ) ≤−
R0

1+ R0Φ(t1)
> Φ(t1)

z2 (t1)×

×

∫ t0

t0−T
Φ>Φdt + ε2T (38)

Applying the mean value theorem for integration once
more gives

∫ t0

t0−T
Φ>Φdt = Φ(t2)

> Φ(t2)T (39)

If T is sufficiently small, thent1 ≈ t2 ≈ t ∈ (t0−T,t0] so
that

Φ(t1)
> Φ(t1) ≈ Φ(t2)

> Φ(t2) =
1
T

∫ t0

t0−T
Φ>Φdt = Φ2

0 (40)

and

ż1 ≈
z1 (t0)− z1 (t0−T )

T
≤−Γ0β 2

0 b>Pe + ε1 (41)

ż2 ≈
z2 (t0)− z2(t0−T )

T
≤−az2 + ε2 (42)

The tracking error dynamics can also be written as

ė ≤ Ace + b(z1 + z2+ ∆2) (43)

Remark 1: The piecewise linear approximation of the
nonlinear adaptive laws and the tracking error dynamics
over a moving time window enables the adaptive control
to be analyzed in the context of an equivalent LTI system
from which system robustness can be assessed via the



linear stability margin concept during that time window. The
window widthT can be adjusted to sufficiently capture initial
transients for analyzing system robustness.

Remark 2: The persistent excitation valuesβ 2
0 and Φ2

0
may be a more suitable choice than the standard persis-
tent excitation definition which would be1T

∫ t0
t0−T β β>dt

and 1
T

∫ t0
t0−T ΦΦ>dt, respectively. The persistent excitation

matrices are singular and so are not invertible. On the other
hand, β 2

0 and Φ2
0 are zero only if β = 0 and Φ = 0. It

can be shown that the tracking error depends onβ 2
0 and

the approximation error of the direct adaptive law, while
Φ2

0 affects the parameter convergence of the RLS indirect
adaptive law.

Proof: Eliminating z1 and z2 in the linearly approximate
tracking error dynamics results in
(

s2−Acs+ Γβ 2
0bb>P

)

e≤ b

(

−
R0Φ2

0

1+ R0Φ2
0

z2 + ε1 + ε2+ ∆2

)

(44)
For R0Φ2

0 � 1, a ≈ 1, the solution ofz2 is

z2 (t0) ≤ [z2 (t0−T )− ε2]e
−T + ε2

so in the limit z2 converges to

lim
t0→∞

sup|z2| = ε2 (45)

Therefore, the convergence of the tracking error can be
found by

lim
t0→∞

sup|e| =
b(ε1 + ∆2)

Γβ 2
0 λmin (bb>P)

(46)

One should note that while increasingΓβ 2
0 can help

reduce the tracking error, the system robustness may be
compromised when it is examined in the context of the LTI
stability margins.

To analyze the linear stability of the approximate tracking
error and the hybrid adaptive law, the characteristic equation
of closed-loop system is evaluated by the Schur complement
formula as

det
(

sI− Ā
)

= det(sI + aI)sdet

(

sI −Ac +
Γβ 2

0 bb>P

s

)

(47)
whereĀ is the state transition matrix in Eq. (26).

SinceKp andKi are diagonal and represent individual loop
gains for the tracking error, the determinant can be evaluated
as

det
(

sI − Ā
)

= (s+ a)n×

×
n

∏
i=1

(

s3 + kp,is
2 + ki,is+ Γβ 2

0 p22,is+ Γβ 2
0 p12,i

)

(48)

where p12,i = qk−1
i,i and p22,i = qk−1

p,i

(

1+ k−1
i,i

)

,i = 1, . . . ,n,
are diagonal elements of partitioned matricesP12 andP22 of
P, which solves Eq. (12) withQ = 2qI, whereq > 0 is a
constant.

The linear equivalent effect of the RLS indirect adaptive
law is to add a pole ats = −a, but it does not interact with

the tracking error dynamics. On the other hand, the direct
MRAC interacts intimately with the tracking error which can
affect robustness of the direct adaptive law. For each loop,
the characteristic equation is

(s+ a)
(

s3 + kps2 + kis+ Γβ 2
0 p22s+ Γβ 2

0 p12
)

= 0 (49)

For brevity, the subscripti is dropped. By factorization
with residue, the characteristic equation can be written as

(s+ a)

{

(

s+ Γβ 2
0 α
)

[

s2 +
(

kp −Γβ 2
0 α
)

s+ ki + Γβ 2
0 p22

−Γβ 2
0 α
(

kp −Γβ 2
0α
)

]

+ r

}

= 0 (50)

wherea and the residuer are defined as

α =
(

ki + Γβ 2
0 p22

)−1
p12 (51)

r = Γβ 2
0 p12−Γβ 2

0 α
[

ki + Γβ 2
0 p22−Γβ 2

0 α
(

kp −Γβ 2
0 α
)]

(52)
For Γβ 2

0 p22� ki, which corresponds to fast adaptation and
or large persistent excitation, then

α =
(

Γβ 2
0 p22

)−1
p12 (53)

r = −p−1
22 p12

[

ki − p−1
22 p12

(

kp − p−1
22 p12

)]

(54)

For the ideal tracking error response withAp = A and
Bp = B, the characteristic equation is second-order with
a = 0 andΓ = 0 in Eq. (50). For the system to have good
damping characteristics, the closed-loop poles should be a

complex-conjugate pair. This implieski ≥
k2

p
4 in order for

Re[−λmax (Ac)] to be largest. Then

p−1
22 p12 = kp (1+ ki)

−1 ≤ kp

(

1+
k2

p

4

)−1

(55)

Thus r is relatively small if kp is sufficiently large and
therefore can be neglected. Then, the approximate roots of
the characteristic equation (50) are

s = −a (56)

s = −Γβ 2
0 α = −p−1

22 p12 (57)

s = −
k̄p

2
± j

(

k̄i −
k̄2

p

4

)

(58)

where k̄p and k̄i are the linearly approximate adaptive pro-
portional and integral gains defined as

k̄p = kp − p−1
22 p12 (59)

k̄i = ki + Γβ 2
0 p22− p−1

22 p12
(

kp − p−1
22 p12

)

(60)

Equation (58) reveals that asΓβ 2
0 increases for fast adapta-

tion and or large persistent excitation, the imaginary partof
the complex-conjugate poles becomes large. Consequently,
fast adaptation will result in high frequency oscillationsin
adaptive signals, a well-known fact in adaptive control [8].



This high frequency oscillation can result in excitation of
unmodeled dynamics that may be present in the system and
therefore can lead to a possibility of instability. The approx-
imate bounded linear stability method is able to capture this
behavior of nonlinear adaptive control in the linear analysis
context. This method should be able to provide a method for
assessing linear stability margins that can be used to adjust
the adaptive gain.

IV. M ETRICS-DRIVEN ADAPTIVE CONTROL

Metric-driven adaptive control is an approach that ad-
dresses stability and robustness of adaptive control in terms
of quantifiable metrics. The goal of metrics-driven adaptive
control is to achieve adaptation that satisfies a given set
of metrics. Since adaptive control is nonlinear, the notion
of metrics is not well established. Lacking of appropriate
metrics for nonlinear adaptive control, the bounded linearsta-
bility analysis method can provide a framework for metrics-
driven adaptive control whereby the nonlinear adaptive lawis
approximated by a linear equivalent system. Stability of the
approximate LTI system can then be quantified in terms of
gain and phase margins. These margins define how close to
the verge of instability a control system is when subjected to
disturbances. The adaptive gain can then be estimated from
the bounded linear stability analysis method to meet specified
margins and then used to drive the adaptation. Based on this
approach, the system transfer function is obtained by taking
the Laplace transform of the plant model as

sx =
(

Ap −BpB̂∗−1
p Â∗

p

)

x + BB̂∗−1
p

(

−b>Ac +
Γβ 2

0 b>P

s

)

e

+ BB̂∗−1
p

(

sxm −W ∗>β −
−az2+ ε1 + ε2

s

)

(61)

The open-loop transfer function betweenx and x̃ is

G(s) =
(

sI−Ap + BpB̂∗−1
p Â∗

p

)−1
×

×BpB̂∗−1
p

(

Kp +
Ki + Γβ 2

0 P22

s
+

Γβ 2
0 P12

s2

)

(62)

The RLS indirect adaptive law results in convergence of
Â∗

p → Ap and B̂∗
p → Bp if a → 1. Then, the transfer function

becomes

G∗ (s) ≈
Kps2 +

(

Ki + Γβ 2
0 P22

)

s+ Γβ 2
0P12

s3 (63)

G∗ (s) can be broken into individual SISO transfer func-
tions from which stability margins can be computed. Stability
margins of G(s) can be evaluated by structured singular
values, or by one loop at a time and then the worst-
case stability margins could be estimated using multi-loop
stability margin definitions [9]. The stability margins are
generally functions ofΓβ 2

0 . The persistent excitationβ 2
0 can

be computed from Eq. (27) within a given time window.
Using this value, the adaptive gainΓ can be calculated and
used for adaptation for the next time window. This process
is repeated untilΓ should reach a steady state value when
the weights no longer vary.

V. SIMULATION

To illustrate the bounded linear stability analysis method, a
simulation was performed for a damaged twin-engine generic
aircraft with 25% of the left wing missing [2], as shown in
Fig. 2. The hybrid adaptive control is implemented in a flight
control to track a pitch doublet.

Fig. 2 - Damaged Generic Aircraft
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Fig. 3 - Pitch Rate Tracking Error

Figure 3 is a plot of the pitch rate tracking error. Without
adaptation (Γ = 0, R = 0), the tracking performance of the
flight control is quite poor as the tracking error is large. With
the direct MRAC alone (Γ = 104, R = 0), the tracking error
becomes smaller but high frequency contents also appear.
This is consistent with the closed-loop pole analysis. With
the hybrid adaptive control (Γ = 104

, R = 104I), the tracking
error is significantly reduced along with the high frequency
contents. Thus, the hybrid adaptive control appears to be
more effective than the direct MRAC alone
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Figure 4 is the root locus plot of the characteristic equation
for a = 1 whenR0Φ2

0 � 1. The root locus plot agrees well



with the closed-loop pole analysis. The imaginary part of
the complex-conjugate poles increases with increasing the
adaptive gainΓ. This gives rise to high frequency oscillations
in the adaptive signals whenΓ is large.
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Fig. 5 - Bode Plot ofG∗ (s) of Pitch Loop

Figure 5 is the Bode plot of the transfer functionsG∗ (s)
evaluated for the first 5 seconds. The Bode plot shows that as
Γ increases, the phase margin deteriorates. This is a typical
behavior of a high-gain controller. Thus, while increasingΓ
leads to a better tracking performance, the relative stability
of the system is compromised, as high frequency signals can
excite unmodeled dynamics and lead to instability [7].
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Fig. 6 - Phase margin

Figure 6 is a plot of the phase margin versusΓ. Increasing
Γ causes the phase margin to decrease. MIL-F-9490 speci-
fication for flight control systems typically requires a phase
margin of 45◦ and a gain margin of 6 dB. The adaptive gainΓ
corresponding to this phase margin specification establishes
an upper boundΓmax for metrics-driven adaptive control.
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Fig. 7 - Metrics-Driven Hybrid Adaptive Control

Figure 7 is a plot of the pitch rate doublet tracking and
roll and yaw rate responses to meet a phase margin of 45◦

with an adaptive gainΓ = Γmax. The hybrid adaptive control
(Γ = Γmax, R = 104I) clearly performs better than the direct
MRAC alone (Γ = Γmax, R = 0) , which suffers large initial
transients, although high frequency contents no longer appear
in the signals.

VI. CONCLUSIONS

This paper has presented a bounded linear stability analy-
sis method for analyzing approximate linear stability margins
of a nonlinear hybrid adaptive control that blends both direct
and recursive least-squares indirect adaptive laws. A piece-
wise, approximate linear equivalent system is formulated
over a short, moving time windows within which the stability
margins are analyzed. The analysis relates the convergenceof
the tracking error with the persistent excitation for the direct
adaptive law, and the parameter convergence of the plant
model with the persistent excitation for the indirect adaptive
law. The closed-loop poles of the approximate linear equiva-
lent system shows that increasing the adaptive gain resultsin
high-frequency oscillations in the adaptive signals. A margin
analysis shows that increasing the adaptive gain causes the
phase margin to decrease. Thus, there exists an upper bound
for an adaptive gain that satisfies a specified phase margin.
This adaptive gain is used to limit the direct adaptation in the
hybrid adaptive control to provide robustness. The simulation
shows that the metrics-driven hybrid adaptive control has a
better tracking performance than the direct adaptive control
alone.
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